
Multidimensional wave packet motion in quadratic potentials with and without friction:

oscillation and barrier penetration

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 1245

(http://iopscience.iop.org/0305-4470/11/7/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math, Gen., Vol. 11, No. 7, 1978. Printed in Great Britain 

Multidimensional wave packet motion in quadratic 
potentials with and without friction: oscillation and 
barrier penetration 
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Sektion Physik, Universitat Miinchen, Am Coulombwall 1, D-8046 Garching, Germany 

Received 31 October 1977, in final form 9 January 1978 

Abstract. We study the motion of N-dimensional wave packets in quadratic potentials 
without friction and also under the influence of two different quantum frictional potentials. 
Differential equations for the coordinate and momentum uncertainties and for the cor- 
relations are presented and solutions for oscillatory motion and barrier penetration are 
given where possible. The barrier penetration probabilities are compared with each other. 

1. Introduction 

Ehrenfest’s theorem holds rigorously if at most quadratic potentials are involved, i.e. 

(x) = 3, ( l . l a )  

(P> = 6, (1.lb) 

where here, and in the following, a bar denotes a classical quantity and angular 
brackets are expectation values. The centres of such quantum mechanical wave 
packets, hence, travel along classical trajectories which are solutions of Newton’s 
equation of motion, 

:+vv=o, (1.2) 

Q=i2b+gmf .  (1.3) 

provided that the potential has the form 

Here, k is the symmetric stiffness matrix, m the symmetric matrix of inertia and g the 
vector of constant acceleration. The elements of k, m and g do not depend on the 
coordinates or momenta and, except that m is positive definite and that the inverses of 
k and m exist, there are no other constraints superimposed. The solutions thus 
include cases where one or more eigenvalues of the stiffness matrix are negative, i.e. 
the motion on an inverted parabola or, more generally, in a multidimensional saddle- 
point surface. This corresponds quantum mechanically to the penetration of a 
quadratic barrier giving rise to the unfamiliar phenomenon that a Gaussian waue 
packet attacking a quadratic barrier does not split up into reflected and transmitted 
wave packets but rather stays Gaussian in shape and spreads in time (cf Weiner and 
Partom 1969 in one dimension and Weiner and Partom 1970 in several dimensions). 
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This is in contrast to the penetration of waves through the same barrier or saddle 
surface (cf Hill and Wheeler 1953 in one and several dimensions). 

It is one aim of this paper to give differential equations and their solutions for the 
time evolution of the coordinate and momentum spreading of wave packets in arbi- 
trary quadratic potentials by using matrix notation. The other aim is to include 
frictional effects by considering instead of equation (1.2) the linearly damped equation 
of motion 

p + kf +mg + yp = 0, (1.4) 

where the conservative potential (1.3) has already been employed and y is the positive 
definite symmetric matrix of friction constants whose inverse need not necessarily 
exist. The classical time rate of change of the energy dissipation is then given by 

- 
E = - ' -  2P n YF, (1.5) 

where n = m-' and the energy has been defined as potential energy (1.3) plus kinetic 
energy 

(1.6) F = ' -  - 2PnP. 

Such linearly damped systems were recently taken into consideration in nuclear 
physics, for instance for the explanation of deep-inelastic heavy-ion scattering 
experiments or fission phenomena (for a review cf Hasse 1978). They are also of 
interest for models of Brownian motion in rate theories for solids (cf Weiner and 
Forman 1974). Their quantum mechanical counterparts, however, are not uniquely 
defined because non-conservative systems do not fit into the usual Hamilton 
formalism. Apart from the linear but explicitly time-dependent Hamiltonian of Kanai 
(1948) whose solutions conflict with the uncertainty principle (cf the discussion in 
Hasse 1975), yet two non-linear and Hermitean frictional potentials, W, are known 
which reproduce equation (1.4) in the Ehrenfest limit. The Hamiltonian, hence, reads 

H = T + V + W, (1.7) 
with T and V as in equations (1.3) and (1.6) and f replaced by x and p by p = -ihV. 
In the term WK, due to Kostin (1972), the quantum analogue to the classical velocity 
is the hydrodynamic fluid velocity, i.e. the gradient of the phase of the wavefunction, 
giving rise to 

Since WK is not of the form of a scalar product, it cannot be generalised to non- 
isotropic friction in more dimensions ( y  is a scalar). The other term considered, the 
general frictional potential WG, whose functional form is due to Sussmann (1973), cf 
also Albrecht (1975), Hasse (1975) and Kostin (1975), is based on the supposition 
that the quantum analogue to the classical momentum is the momentum operator. 
This friction potential reads 

( 1 . 9 ~ )  

in one dimension. Here [ , ]+ is the anticommutator and c is an arbitrary real constant 
which does not enter in the classical equation of motion but rather allows for 
fluctuations. Its generalisation to more degrees of freedom and anisotropic friction is 
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straightforward. Employing equation ( 1 . 1 )  here and in what follows, which is still 
valid under friction for quadratic potentials, equation ( 1 . 9 ~ )  becomes 

w c  = Py(x - Z ) + i c [ ( x  -f)y(p - P ) +  (p - P ) y ( x  -a)] 
= ( x - f ) y [ c p + ( l  -c)p]-$iAc Tr(y). (1 .96 )  

In 0 2 we will be concerned with the spreading of multidimensional wave packets 
under the action of the general frictional potential. Analogous results with Kostin's 
friction will be given in 0 3 and solutions for both types of frictional potentials are 
presented in Q 4 .  

2. General frictional potential 

The mean square deviations of the expectation values of the coordinates and 
momenta and their correlations are defined by+ (cf Messiah 1964 for the one- 
dimensional case) 

x = ( x  ox>- f  0 f ( 2 . 1 ~ )  

4 = ( P " P ) - B o P  ( 2 . 1 6 )  

a = ( x  0 p ) - 2 0 p - $ih 1 , ( 2 . l c )  

The matrices x and 4 are real and symmetric by definition, whereas U is not 
symmetric. By virtue of the commutation relations, 

( 2 . 2 )  
cy p 0 x - x  0 p = -iAl, 

however, U is real and its transpose is given by 

&=(pox)-po. t+$if i l .  ( 2 . l d )  

In the next subsections differential equations are established for these three functions 
of time under the action of the time-dependent Schrodinger equation with the fric- 
tional potential (1 .96 ) .  

2.1. General wave packets 

Without particular knowledge of the solution of the Schrodinger equation the evolu- 
tion in time of the position and momentum uncertainties and their correlations is 
obtained by use of the equation of motion of operator expectation values: 

(2 .3 )  

Employing for A the operators x 0 x,  p 0 p and x 0 p ,  respectively, one gets 

k = a n  +ne + y 'x  +xy '  

-4 = k a  + &k+ $4 + &' 

U = n 4  - X k  + y ' a  - a y ' .  

( 2 . 4 ~ )  

( 2 . 4 6 )  

( 2 . 4 ~ )  

t Notation: The tensor product, A = U 0 b, is defined by Ai/ = ai& Transposition is indicated by A with 
A,, = Aii. The unit matrix with elements Sii is denoted by 1. 
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Here only the combination y' = cy enters which means that in the special case c = 0 
(Albrecht 1975) wave packets spread at the same rate as in the undamped case 
although their centres travel along damped classical trajectories. Secondly, the 
constant acceleration, g, does not enter at all. 

This set of coupled matrix differential equations can be simplified in two cases. 
If y = 0 or c = 0 one obtains 

* , y + 2 ( w 2 f + f 6 2 ) + ( 0 4 * - 2 0 2 x & 2 + x 6 4 ) =  0, (2.5) 

where 0 2 = n k  is the square of the frequency matrix. Furthermore, the one- 
dimensional case with friction obeys 

2.2. Gaussian wave packets 

The differential equations (2.4) contain solutions which do not obey the Heisenberg 
uncertainty equation, 

(2.7) 
1 2  

Xii& 3 qh . 

For this reason and for the sake of simplicity it is advantageous to restrict oneself to 
Gaussian wave packet solutions. If the N-dimensional complex but symmetric width 
matrix a is employed, we have 

2 
+(x, t ) =  N(t)exp - f )a - ' (x  - f )+ -@(x -f)+ e( r ) ) ] ,  (2.8) 

h 

where the normalisation function is 

(2.9) 

The time-dependent phase O ( t )  and also a(t)  are determined from the Schrodinger 
equation, 

1 
ai = ihn - - a k a  +ay'+ y ' a ,  ( 2 . 1 0 ~ )  

(2.10b) 

is the classical Lagrangian. The wave packet's position, momentum 

h 
j = L - '  421 2 Tr(nx-'), 

where E = 2= - 
and correlation uncertainty are related to a as follows, 

x = +(Re(a-'))-' 

4 = ih2(Re(a))-' 

U = ih  Im(a)(Re(a))-', 

(2.1 l a )  

(2.1 1 b )  

(2.11c) 

from which one obtains immediately the condition which restricts general solutions to 
Gaussians, 

X+U2+'  4h 1 .  (2.12) 

If equation (2.12) is employed, the linear fourth-order differential equation for the 



Multidimensional wave packet motion 1249 

one-dimensional case reduces to the second-order non-linear equation 

(2.13) 2 ~ , i ; - * ~ + 4 ( 0 ~ - y ' ~ ) x ~ = h ~ / m  2 . 

On the other hand, if a is split up into real and imaginary parts according to 

i 
&.-I = tx-' -,a (2.14) 

so that p-' has the meaning of the width of the phase of the wave packet, equation 
( 2 . 1 0 ~ )  becomes identical to the coupled set of equations 

X = = ~ x + x P n + r ' x + x r ' ,  

P+Pnp+k+y'P+py'=$h2X-'nX-'. 

The quantity p is related to the other functions according to 

u = X P  

f#J = ah2X-' +pxj?. 

( 2 . 1 5 ~ )  

(2.15 6) 

( 2 . 1 6 ~ )  

(2.166) 

Unfortunately, /3 cannot be eliminated from (2.15) to yield a matrix equation of the 
form (2.13). 

3. Kostin's frictional potential 

The functions x ,  f#J and U are not sufficient to determine a set of matrix equations like 
equation (2.4) for arbitrary wave packets under the influence of Kostin's friction, 
equation (1.8), because the expectation value of the second derivative of the phase 
cannot in general be expressed by them. For Gaussian wave packets with their simple 
phases, however, one obtains, with the same procedure as indicated above, 

x = u n + n c i  

-4 = k ~ + c i k + 2 y ( f # J - f h ~ x - l )  

U = n 4  - X k -  yu. 

Similarly, the equivalent to equation (2.10) is 

( 3 . 1 ~ )  

(3.16) 

( 3 . 1 ~ )  

i 
h ai = i h n - - a k a + i p  Im(a-')a ( 3 . 2 ~ )  

4 = - Tr($h2nX-' - jyn-lx),  (3.26) 

and the one equivalent to equation (2.15) is 

x = n$x +xSn 
6 + @ n P + k +  y p  =ah2x-lnX-' 

(3.3a) 

(3.36) 

Finally, the one-dimensional case obeys the non-linear differential equation similar to 
equation (2.13), 

(3.4) 2x,ij - + 4 w  'x + 2 y,yi  = h2 / m '. 
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4. Solutions 

The inertias, stiff nesses and friction constants are in general non-isotropic, i.e. non- 
diagonal with respect to the coordinates 5. However, if the linear frictional force is 
proportional to the mass (as well as to the velocity), the same transformation which 
diagonalises the inertia and the stiff ness matrix also diagonalises the friction matrix 
(Goldstein 1959). The form (1.4) of the classical equations of motion suggests 
therefore already that k, m and y are diagonal. On the other hand, if the components 
of f are regarded as generalised coordinates, they will usually be chosen in such a way 
that the equations of motion are decoupled. In the following we will therefore assume 
with a slight loss of generality that k, m and y and, hence, also n and U* are diagonal 
with elements ki,  mi, yi, ni and U:, respectively. Furthermore, since the linear force 
mg does not enter in the spreading of the wave packets, it is omitted completely. 

4.1.  General friction, N-dimensional Gaussian wave packets 

The set of real linear differential equations (2.4) together with the condition (2.12) is 
equivalent to the complex non-linear differential equation (2. l oa ) .  Since (2.4) has 
only exponential (or oscillatory) solutions, those of equation (2 .  l o a )  therefore must 
be of the same functional form. The condition (2.12), hence, although valid for all 
times, restricts only the initial conditions to certain values. As a consequence, in order 
to find the Gaussian wave packet solutions, it suffices to find the solutions of the 
simpler set (2.4) and then to employ (2.12) at t = 0. 

Under these conditions, equation (2.4) becomes 

( 4 . 1 ~ )  

(4.lb) 

( 4 . 1 ~ )  

B y  making ansatzes of harmonic time dependences for the quantities xii, &j, aij 

one obtains immediately the eigenfrequencies *(v:* vi), where 

(4.2) 
2 r2 1/2 vi’=(Ui-yi  ) . 

However, if one of the stiffnesses is negative, i.e. if one 0: is negative, we shall employ 
the notation 

(4.3) 
so that in all subsequent formulae, vi is to be replaced by ipi: 

As concerns the initial conditions, equation (2.12) and its derivative with respect to 
time connect 4(0) and d(0) to x(0 )  and.x(O), so that the only free parameters are 
~ ( 0 )  and x(0).  Among these, only two cases are of physical interest: (i) the wave 
packet has no initial spreading velocity, i.e. x (0 )  = 0 ;  and (ii) the wave packet has an 
initial minimum uncertainty product, i.e. x(O)4(0) = ah21. The latter condition, in 
turn, means a ( 0 )  = 0 by equation (2.12) and, consequently, x(0)  = y’x(O)+x(O)y’ by 
equation (2.4a), 

2 I2 1 / 2  
pL!=(Ui+yi ) 

(4.4a) 

(4.46) 
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Note that (i) and (ii) become equivalent if y' = 0, i.e. if there is no damping or if c = 0. 
The full solutions with the set (i) of initial conditions now read 

( 4 . 5 ~ )  0 nini 
viuj 

xi, =xi, cos(ui/t) cos(ui ' t)+4iiNsin(u;t)sin(ui ' t)  

where the condition (2.12) at t = 0 demands c$'# c$(O) but x04O =$h21, i.e. 

4:. = $h*(x;)-', (4.6) 

The solutions (4.5) contain an interesting special case well known from undamped 
oscillatory motion, namely if 

then the inverse matrix elements become equal to the reciprocal elements and all 
functions stay diagonal and constant in time, 

(4.8) 

Equation (4.7), however, can only be fulfilled for oscillatory motion, because other- 
wise ,Y:, would become imaginary. On the other hand, employing the set (ii) of initial 
conditions yields the solutions 

4.2. General friction, barrier penetration 

The probability of barrier penetration as defined and evaluated in the appendix 
depends only upon the classical motion of the centre and the spreading of the wave 
packet in the direction of the barrier. We can therefore drop the subscripts 1 and 1, 1 
and write 

p( t )  = i erfc[-a(r)/(2~0/(2~(t))"~]. (4.10) 
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The classical motion, f ( t ) ,  is the solution of equation (1.4), 
$0 + + y f o  

x cosh(pt)+ 
P 

(4.11) 

where p = ( w 2 +  ~ ~ 1 4 ) ” ~  and w 2  = - k / m  > 0, and the one-dimensional spreading law 
with the set (i) of initial conditions, 

(4.12) 

2 2 1 /2  where p’  = (w2+c y ) 

portional to 

, results from equations ( 4 . 5 ~ )  with (4.6). 
In the limit of large times, the argument of the error function becomes pro- 

(4.13) 

which tends to zero for both of the physically relevant cases c = 0 (Albrecht 1975) and 
c =$ (Hasse 1975). Thus P ( t ) + i  and the wave packet spreads faster over all space 
than its centre moves. 

If friction is absent, however, the expression (4.13) is equal to unity, which results 
in a finite value of the argument of the error function and the asymptotic value of the 
barrier penetrability (cf Weiner and Partom 1969), 

exp(p - P‘ - Iy>t, 

(4.14) 

The existence of this finite value hinges on the fact that the wave packet moves 
asymptotically with the same law as it spreads. 

4.3. Kostin friction, barrier penetration 

Except for the trivial constants 

(4.15) 

if oscillatory motion is concerned, no elementary solutions of the differential equa- 
tions (3.1) through (3.4) are known. For barrier penetration, however, the asymptotic 
form 

X ( t ) a  e(2F-y)1 (4.16) 

is easily obtained from (3.4) by replacing w 2  by - w 2  and setting the right-hand side 
equal to zero. Thus ( 2 ~ ( r ) ) ’ / ~  obeys asymptotically the same law as f ( t )  and P(c0) will 
assume a definite value other than i. The constant of proportionality in (4.16) can 
only be determined approximately. Weiner and Forman (1974), for example, rewrite 
equation (3.4) in such a way that the linear portion of it with the correct asymptotic 
behaviour equals a right-hand side which is then replaced by its initial value. With the 
set (i) of initial conditions we get 

2w2x0. (4.17) 
h2 x 2  2 h2 

2m2x 2x 2m2x0 
);;-40 2 x + 2 y x = -  + - + y x - 2 w  x = - -  
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This has the solution 

4 ~ ( r ) - . ( 2 x O - ~  Y 

and the asymptotic probability of barrier penetration becomes 

(p  + 4y)a" + io 
(4.19) 

Another approximate solution results from replacing the disturbing linear first 
derivative with respect to time by its asymptotic value, 

2 x i  -i2 - (2p - y ) 2 x 2  = h2/m2 
Then we get the solution 

(4.20) 

leading to 

(4.22) 

A comparison of the two different results of the time-dependent probability of 
barrier penetration, equation (4.10) with (4.11) and (4.18), (4.21), and an exact 
numerical solution is provided in figure 1. The arbitrary units of time and length are 
T and L, respectively, and the constants involved are chosen as f f o  = -4L, 2x0 = L2,  
w = 11 T, y = 0.31 T, film = L2/  T and part (a)corresponds to the initial condition k = 0, 
whereas part ( 6 )  corresponds to ko = 3L/T. In both cases a slight improvement 
is achieved by use of equation (4.21) instead of equation (4.18) of Weiner and 

f / t ,  

Figure 1. The time-dependent probability of barrier penetration under Kostin's friction for 
two different initial conditions. See text for units and constants. Full curve, exact numerical 
solution; broken curve, Hasse equation (4.21); dotted curve, Weiner and Forman equation 
(4.18). 
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Forman (1974). The difference becomes relatively larger the smaller the penetrability 
is. Using the property that erfc(x)o=x for small arguments, the ratio of (4.22) to (4.19) 
becomes (1 + y / 2 ~ ) ~ ’ *  which amounts to 7% for the above given parameters. 

5. Summary 

We have formulated in general the motion and the spreading of wave packets in 
quadratic potentials by establishing coupled differential equations in time for the 
position and momentum uncertainties and the correlation between them. Arbitrary 
as well as Gaussian wave packets were considered in oscillator and inverted oscillator 
potentials. Linear potentials are also included, but they do not influence the spreading. 
Special emphasis has been put on the use of frictional Schrodinger equations although 
the frictionless case is also included. Thereby two different quantum frictional poten- 
tials were employed, namely the fluid dynamical analogue of Kostin (1972) and the 
general frictional potential which was initiated by Siissmann (1973). 

In particular, analytic solutions of the evolution in time of the wave packets and of 
the barrier penetrability are given if the wave packets are under the influence of the 
general frictional potential. Here the barrier penetrability tends asymptotically 
towards 1 except for the case that friction is absent. On the other hand, if Kostin’s 
frictional potential is employed, the differential equations have no solutions in closed 
form, but an improved asymptotic value of the barrier penetrability is derived which is 
then compared with a numerical solution and with another approximation of Weiner 
and Forman (1974). This value is in general different from 1 which is a consequence of 
the fact that such wave packets spread in time with the same law as their centres move. 
From these results, however, one cannot draw a conclusion whether one or the other 
frictional potential is physically more relevant because in physics only piecewise 
inverted quadratic potentials are realised and, hence, the asymptotic values of the 
barrier penetration probabilities are never attained. 

As applications of these frictional Hamiltonians and of the formalism and results 
presented in this paper we primarily mention nuclear deep-inelastic heavy-ion reac- 
tions and nuclear fission where energy is transferred from the collective motion into the 
intrinsic degrees of freedom (cf Hasse 1978). Similarly in molecular physics, theories of 
non-adiabatic molecular collisions (Tully and Preston 197 1) and in solid state physics, 
models of Brownian motion for rate theories in solids (Weiner and Forman 1974) can 
be modified by including quantum friction. Also Brownian motion and transport 
phenomena in general (Kostin 1972) are interesting subjects of investigation. 
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Appendix. The barrier penetration formula 

The time-dependent barrier penetration probability, P ( t ) ,  is defined as the fraction of 
the wave packet’s squared amplitude which is beyond the barrier’s top. Let x1 be the 
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direction of the barrier and the top be located at x1 = 0, then 
m +m +m 

P( t )=  5 dxl 5 dxz * * * 
0 -m 1-m 

dXN1$(X1,. . . , X N ) ~ ~ .  (‘4.1) 

Using Gaussian wave packets and the transformation yi = x i  -fi, i = 1, . . . , N, this 
reduces to 

P(t>=(2n)-N’2(det(rl))1/2 I dyi 5 -m dyz . .  . I-, dYN exp( -;E Yiqijyj), (A.2) 

where q = x-l. Equation (A.2) is evaluated by employing another transformation, 
z ,  = ya + f a ,  where greek indices now run only over the oscillators, a = 2, , , . , N, and 

m cm +m 

-f, 

fa = Y 1  c v’-l a8 718. 
8 

(A.3) 

Here q’ is the minor which is left over after erasing the first row and first column of q. 
With the identity 

c Ya77a8f8 = y1 c 771aya 
a.8 a 

equation (A.2) becomes 

The second line of equation (A.5) is simply the normalisation of an (N - 1)-dimensional 
Gaussian wave packet, [(2~)”-’/det(q‘)]”~, so that equation (AS)  simplifies even 
further, 

Finally, the expression in the argument of (A.6) is just the ratio of the two determinants, 
which is given by 

The remaining integral, 
m 

P ( t ) =  ( 2 7 r x l p Z  lf, dY1 exp(-yT/2x11), 

can be evaluated by use of the associated error function, 

P( t )  = 4 e r f c [ - ~ ~ / ( 2 ~ ~ ~ ) ’ / * ]  

a result quoted by Rice (1945). 
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